Journal of Industrial Microbiology, 1 (1987) 377–381 Elsevier SIM 00051

Effect of rare earth cations on bactericidal activity of anionic surfactants

R.W. Berg and R.E. Zimmerer

The Procter and Gamble Company, Cincinnati, OH, U.S.A.

Received 23 September 1986 Revised 9 December 1986 Accepted 9 December 1986

Key words: Antimicrobial; Metal salt; Lanthanum; Escherichia coli; Staphylococcus aureus

SUMMARY

Rare earth metal cations are antibacterially synergistic with anionic surfactants, yielding mixtures that have bactericidal activity against a variety of gram-positive and gram-negative bacteria at minimum concentrations ranging from 16 to $125 \,\mu$ g/ml. Uptake of surfactant by *Escherichia coli* increases in the presence of lanthanum, suggesting that the role of rare earth metal cations is to reduce the net negative surface charge on the bacteria, thereby increasing the affinity between the negatively charged surfactant and the bacterial surface.

INTRODUCTION

Surface-active agents are believed to kill susceptible bacteria by damaging cytoplasmic membranes. Anionic surfactants are moderately active against gram-positive organisms, but have little or no activity against gram-negatives, presumably because the outer membranes of gram-negative bacteria do not allow penetration by the surfactant to the cytoplasmic membrane.

Voss [12] reported that the bactericidal effectiveness of several anionic surfactants against *Staphylococcus aureus* is increased in the presence of low concentrations of divalent cations, especially alkaline earths and metals of group IIB of the periodic table. However, these combinations did not result in increased activity against *Escherichia coli*.

This paper describes the broad spectrum antibacterial activity and proposed mechanism of action of rare earth (lanthanides) metal salts of anionic surfactants.

MATERIALS AND METHODS

Source of chemicals and microorganisms

Seven anionic surfactants were studied. Sodium 4-(1'-methylnonyl)benzenesulfonate (2- $C_{10}LAS$) (100% surfactant), sodium 2- $C_{12}LAS$ (100% surfactant), sodium coconut monoglyceride sulfonate (95% surfactant), and sodium lauryl trioxyethylene

Correspondence: Dr. R.W. Berg, The Procter and Gamble Company, Miami Valley Laboratories, P.O. Box 39175, Cincinnati, OH 45247, U.S.A.

sulfate (55.8% surfactant, remainder Na₂SO₄) were synthesized at the Procter and Gamble Company. Sodium decyl sulfate and sodium dodecyl sulfate were obtained as pure compounds from Eastman Kodak Company. Sodium dioctylsulfosuccinate (85% surfactant) was obtained from American Cyanamide. Rare earth metal salts (>99.9% pure) were obtained from Alfa Products. Dodecyltrimethylammonium chloride was purchased from Eastman Kodak, and all bacterial cultures were obtained from the American Type Culture Collection.

Antibacterial assays

Aqueous test solutions were diluted serially in sterile distilled water to achieve appropriate concentrations in a final volume of 5 ml. Test organisms were grown for 24 h at 35° C in Trypticase Soy Broth (TSB), a 1:100 dilution in sterile distilled water was prepared, and 0.05 ml of this diluted culture was used to inoculate the 5 ml test solution. Inoculated test solutions (containing about 10^{5} organisms/ml) were incubated for 10 min at 37° C, and survivors were enumerated by serial tube dilution in TSB or by standard plate count on Trypticase Soy Agar. The minimum bactericidal concentration was defined as the lowest concentration of test material that resulted in no recoverable organisms.

Adsorption of $2-C_{10}LAS$ on E. coli

An 18 h TSB culture of *E. coli* ATCC 11775 was washed by repeated (3 ×) centrifugation and resuspension in distilled water. The bacteria were finally suspended in solutions having concentrations of 3×10^{-6} M ¹⁴C-(2-C₁₀LAS) containing LaCl₃ ranging from 10^{-5} to 10^{-3} M, or MgCl₂ ranging from 10^{-1} to 1.0 M. The organisms were present at levels of approximately 10^{6} /ml. Following incubation at 25°C for 30 min, the cells were harvested by centrifugation, and the concentration of 2-C₁₀LAS in the pellet and supernatant fractions was determined by liquid scintillation counting on a Packard model 2450 Spectrometer. Uptake of LAS was calculated as the percent of the original concentration removed from solution by the bacteria.

RESULTS

The minimum bactericidal concentrations of several anionic surfactants alone and in the presence of LaCl₃ are shown in Table 1. In general, the surfactants were moderately active against the gram-positive *S. aureus*, and inactive against the gram-negative *E. coli*. However, when the surfactants were combined with LaCl₃, the antibacterial activity against both microorganisms was greatly increased. Moreover, the combination exhibited efficacy comparable to that of quaternary ammonium disinfectants [8].

The bactericidal activity of $2-C_{10}LAS$ against *E. coli* in the presence of several rare earth chlorides is shown in Table 2. The metal salts alone had little or no antibacterial activity at the concentrations tested, but all exhibited a potent synergism with the surfactant.

The minimum bactericidal concentrations of the combination of 2-C₁₀LAS with LaCl₃ against a variety of gram-positive and gram-negative bacteria is shown in Table 3. The mixture was broadly active against these organisms at minimum concentrations ranging from 10 to 125 μ g/ml.

It seemed probable that the increased kill of E. *coli* by 2- $C_{10}LAS$ in the presence of LaCl₃ was due to increased adsorption of the anionic surfactant by the negatively charged cells. Therefore, the adsorption of 2-C₁₀LAS was determined in the presence of various concentrations of LaCl₃. If the effect of LaCl₃ was indeed to reduce the net surface charge, divalent cations such as Mg²⁺ at higher concentrations should also exhibit antibacterial synergism with the surfactant. Uptake of $2-C_{10}LAS$ by E. coli and cell death as a function of added lanthanum or magnesium ions is shown in Fig. 1. Both metal ions increased adsorption of the surfactant and acted as antibacterial synergists, but about four orders of magnitude more magnesium than lantha...um was required for the same effect.

Quaternary ammonium surfactants are effective antibacterial agents in part because of the attraction between the positive center in the molecule and

Table 1

Surfactant	Minimum bactericidal conc. (µg/ml)			
	E. coli ATCC 11775		S. aureus ATCC 6538	
	surfactant alone	surfactant + LaCl ₃ ª	surfactant alone	surfactant + LaCl ₃ ª
Sodium 2-C ₁₀ LAS	> 2000	16	2000	32
Sodium 2-C ₁₂ LAS	>2000	32	125	32
Sodium decyl sulfate	> 2000	63	2000	250
Sodium dodecyl sulfate	> 2000	125	500	32
Sodium lauryl trioxyethylene sulfate	> 2000	32	> 2000	63
Sodium dioctylsulfosuccinate	> 2000	32	1000	63
Sodium coconut monoglyceride sulfonate	> 2000	16	>2000	63

Minimum bactericidal concentrations of anionic surfactants with and without added LaCl₃

^a LaCl₃ added to surfactant solution at 1:3 molar ratio. Concentration expressed as La(Surfactant)₃. The minimum bactericidal concentration of LaCl₃ under these conditions is >3500 ppm (0.01 M).

negatively charged bacteria. If the role of rare earth cations is to reduce the net negative charge on or in the bacterial surface, one would expect lanthanum to decrease the antibacterial efficacy of quaternary ammonium surfactants. The data in Table 4 demonstrate that this is indeed the case.

Table 2

Minimum bactericidal concentrations of rare earth metal salts combined with $2-C_{10}LAS$

Metal salt	Minimum bactericidal conc. ^a			
	Metal salt alone (µg/ml)	2-C ₁₀ LAS (μ g/ml) in presence of metal salt ^b		
None	_	> 2000		
LaCl ₃	>2500	16		
DyCl ₃	>2500	10		
NdCl ₃	>2500	16		
PrCl ₃	>2500	3		
YbCl ₃	>2500	3		

^a E. coli ATCC 11775

^b 3:1 molar ratio, surfactant:lanthanide

Table 3

Minimum bactericidal concentration of lanthanum/LAS against representative gram-positive and gram-negative bacteria

Organism	Minimum bactericidal conc. $(\mu g/ml)^a$	
Staphylococcus aureus	32	
ATCC 6538		
Staphylococcus epidermidis	32	
ATCC 14990		
Micrococcus luteus	125	
ATCC 4690		
Streptococcus faecalis	32	
ATCC 6569		
Escherichia coli	16	
ATCC 11775		
Pseudomonas aeruginosa	16	
ATCC 15442		
Klebsiella pneumoniae	125	
ATCC 4352		
Proteus vulgaris	32	
ATCC 13315		

^a as La(2-C₁₀LAS)₃

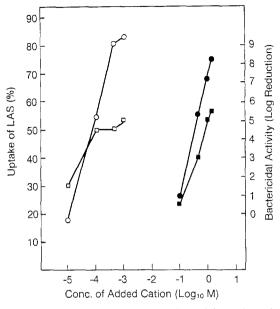


Fig. 1. Effect of cations on bactericidal activity and uptake of 2-C₁₀LAS by *E. coli*. \bigcirc = LAS uptake in the presence of La³⁺; \bullet = LAS uptake in the presence of Mg²⁺; \square = bactericidal activity of LAS in the presence of La³⁺; \blacksquare = bactericidal activity of LAS in the presence of Mg²⁺.

DISCUSSION

Several hypotheses have been advanced to explain the bactericidal action of surface-active agents, including general denaturation of cell proteins, specific inactivation of enzymes, and the disorganization of cell permeability barriers. The relative merits of these hypotheses have been reviewed by Newton [5], and the accumulated data suggest that treatment of bacteria with certain surfactants results in a rapid disorganization of the cytoplasmic membrane. Moreover, the key to efficacy of surfactants against bacteria appears to be the ability to reach the cytoplasmic membrane. In order to reach this site, they must penetrate the outer layers of the cells, layers which are vastly different in gram-positive and gram-negative bacteria. Gram-positive organisms have a relatively porous peptidoglycan cell wall which has a molecular exclusion limit of up to 100 000 amu [9]. In addition to a similar though somewhat thinner cell wall, gram-negative bacteria possess a lipoprotein outer membrane that confers

Table 4

Antibacterial efficacy of a cationic surfactant in the presence of lanthanum

Log ₁₀ survivors ^a /ml	
0	
4	
6	
7	

^a E. coli ATCC 11775

^b C₁₂H₂₅N⁺(CH₃)₃, Cl⁻

additional barrier properties on the cells. This membrane contains pores which act as molecular sieves with exclusion limits of 500-700 amu for saccharides [1] and peptides [7]. Inouye [4] has suggested that these pores are water-filled and lined with acidic amino acids, the ionized carboxyl groups of which result in a negatively charged interior at physiological pH. Anionic surfactants presumably are not effective against gram-negative bacteria because of the charge repulsion that exists between the surfactant and the anionic bacterial surface. Moreover, negatively charged pores may be of ecological advantage to E. coli, which must exclude anionic bile salts from its natural habitat [6]. A decrease in the net negative charge on bacteria should result in an increase in uptake, penetration, and antibacterial efficacy of anionic surfactants. This can be accomplished by lowering the pH of the environment. Gram-negative bacteria have isoelectric points in the range of pH 4-5 [11], and acidic anionic surfactant solutions are indeed active against these organisms [2].

Another way of reducing the charge on bacteria is by the addition of appropriate cations. Lanthanides are particularly efficient because they have high charge densities, and exist substantially as unhydrolyzed trivalent ions at physiological ph. This is reflected by relatively low log K values for association of La^{3+} with hydroxide ion compared with other multivalent ions such as Al^{3+} and Fe^{3+} [10]. Moreover, Falk [3] reported reversal of the surface charge of *E. coli* by lanthanum ion as measured by changes in electrophoretic mobility. While many divalent ions such as Ca^{2+} and Mg^{2+} are relatively unhydrolyzed in solution, they do not have high enough charge densities to be effective at low concentrations. The combination of an anionic surfactant with a lanthanide cation therefore represents a unique and potentially useful example of antibacterial synergism.

ACKNOWLEDGEMENT

The authors thank M.D. Blizzard and C.J. Ostendorf for providing technical assistance.

REFERENCES

- Decad, G.M. and H. Nikaido. 1976. Outer membrane of gram-negative bacteria. XII. Molecular sieving function of cell wall. J. Bacteriol. 128: 325–336.
- 2 Dychdala, G.R. 1983. Surface active agents: acid-anionic compounds. In: Disinfection, Sterilization and Preservation, 3rd Edn. (Block, S.S., ed.), pp. 330-334, Lea & Febiger, Philadelphia.
- 3 Falk, I.S. 1928. Electrophoresis of bacteria and other micro-

organisms and some relations to immunological theory. In: Colloid Chemistry, Vol. II (Alexander, J., ed.), pp. 731–746, The Chemical Catalog Company, Inc., New York.

- 4 Inouye, M. 1974. A three-dimensional molecular assembly model of lipoprotein from the *Escherichia coli* outer membrane. Proc. Natl. Acad. Sci. USA 71: 2396–2400.
- 5 Newton, B.A. 1960. The mechanism of the bactericidal action of surface active compounds: a summary. J. Appl. Bacteriol. 23: 345-349.
- 6 Nikaido, H., E.Y. Rosenberg and J. Foulds. 1983. Porin channels in *Escherichia coli*: studies with beta-lactams in intact cells. J. Bacteriol. 153: 232–240.
- 7 Payne, J.W. and C. Gilvarg. 1968. Size restriction in peptide utilization in *Escherichia coli*. J. Biol. Chem. 243: 6291–6299.
- 8 Petrocci, A.N. 1983. Surface active agents: quaternary ammonium compounds. In: Disinfection, Sterilization and Preservation, 3rd Edn. (Block, S.S., ed.), pp. 309–329, Lea & Febiger, Philadelphia.
- 9 Scherrer, R. and P. Gerhardt. 1971. Molecular sieving by the Bacillus megaterium cell wall and protoplast. J. Bacteriol. 107: 718-735.
- 10 Smith, R.M. and A.E. Martell. 1976. Critical stability constants, Vol. 4. Plenum Press, New York.
- 11 Stearn, A.E. and E.W. Stearn. 1931. Metathetic equilibria of bacterial systems with special reference to bacteriostasis and bacterial flocculation. Protoplasma 12: 435–464.
- 12 Voss, J.G. 1963. Effect of inorganic cations on bactericidal activity of anionic surfactants. J. Bacteriol. 86: 207-211.